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Quantum multidimensional operators with 
many controls 

Nikolay Raychev 
 

Abstract - In this report is proposed an approach for constructing a quantum circuit, containing O(𝑛2) Toffoli gates, 
CNOT gates and single qubit gates that implements а 𝐶𝑛(X) gate for n > 3, without using work qubits. For solving the 
problem is constructed a 𝐶𝑛  𝑁𝑁𝑁 gate from linear number of Toffoli gates and single qubit gates, without using ancilla 
bits..   
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1. INTRODUCTION 
 
The controlled single qubit operators are an 
essential element in the multidimensional quantum 
calculations. Because the controlled single qubit 
operators with many controls are not directly 
available for synthesis, the application of these 
operators effectively involves the use of numerous 
single qubit operators with only one control, this is 
a fundamental problem for the multidimensional 
quantum calculations. There are many applications 
for single qubit operators with many controls, 
including the application of unitary arithmetical 
operations [8, 5], synthesizing multidimensional 
quantum circuits [6, 4] and the operators for the 
Grover's algorithm in a multidimensional quantum 
logic [3]. The problem related to the controlled 
single qubit operators is solved by Barenco et al. [1] 
for binary quantum logic, using Θ(𝑛2) single qubit 
operators with one control and without ancillary 
qubits. Muthukrishnan and Stroud [7] developed a 
quantum array that can be used to control single 
qubit operations in a radical R> 2 by n ≥ 2 controls 
using Θ(𝑛) single qubit operators with one control 
and �n−1

r−2
� ancilla qubits. The quantum array of 

Barenco et al. [1] was extended by Brennen, Bullock 
and O'Leary [2] for multidimensional quantum 
calculations using О(𝑛log2 r+2) single qubit 
operators with one control without using any 
ancilla qubits where г is a radical and n is the 
number of controls. However, this quantum array 
requires taking small radicals of the operation that 
is being controlled which is not practical since 
these radicals correspond to rotations by small 
angles on the Bloch sphere. A new quantum array 
for implementing hermitian operations in an odd 
radical R > 2 with n controls will be shown that 

uses О(𝑛log2 r+2) single qubit operators with one 
control and without ancillary qubits, but does not 
require taking small radicals, as the case is with the 
existing quantum multidimensional operators that 
do not use ancilla qubits. Another quantum array 
will be shown that requires only О(𝑛logr−11+2) 
single qubit operators with one control and can be 
used to control every single qubit operator in an 
arbitrary radical г, but requires additionally 
⌈logr−1𝑛⌉ ancillary qubits. These ancillary qubits 
may be used later, their states are restored to |0>. 
It must be taken into account that the bases for the 
logarithmic expressions are r − 1, this second 
quantum multidimensional operator requires 
several operator and ancilla qubits for higher 
radicals.  
 
This article describes the solution in three parts. 
The first part reveals the construction of 𝐶𝑛 𝑁𝑁𝑁, 
when there is an ancillary bit. The goal of part two 
is to be used this ancillary bit again, but for the 
construction of increment gates. Finally, part three 
is for setting up an ancilla bit out of nothing.  
 
2. REVERSIBILITY 

 
The reversible circuits are interesting for several 
reasons. 
 
First, the reversible circuits bypass the Landauer 
limit, one of the lower limits on the energy, 
necessary to perform calculations. In practice, if 
energy is not needed to be spent for elimination of 
errors, a reversible computation could be done for 
free (i.e. without consuming negative entropy; 
without converting an energy into waste heat (on 
the other hand, we're more than six orders away 
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from the limit, so this is a rather distant into the 
future hypothetically useful practicality).  
 
Second, the reversible circuits are a source of 
torturing problems and unique issues, whose 
solutions are applicable to quantum computing 
(where all the operations are reversible). For 
example, the reversible gates can be classified in 
classes for equivalency according to "how 
universal" they are. And, of course, the fact that can 
not be used NAND, AND, NOR or OR gates, 
makes the problems upon constructing the circuits 
even more tangled. 
 
Despite the loss of "standard" universal logical 
gates, there are still  universal gates for reversible 
computations. Unfortunately these gates always 
come with stipulations on their universality. The 
Fredkin gate (controlled swap) can be used for 
universal calculations, but preserves the number of 
the ON bits. As a result is required a linear number 
of ancilla bits, in order to make something useful 
only with the Fredkin gates. 
 
In this article is used the much more flexible Toffoli 
gate, but it also has some conditionalities. In fact 
there is no reversible gate, which can build all 
reversible operations. 
 
Permutations and parity 
 
Each reversible operation must pair inputs of 
different outputs, such that each output comes 
from exactly one input. More specifically, the 
operation must be equivalent to a permutation of 
the space of the states. 
 
The permutations have a parity. If an odd number 
of swaps is necessary, in order to perform a 
permutation, then it has an odd parity. On the 
other hand, an even number of swaps means that 
the permutation has an even parity. When 
permutations are chained together (i.e. one 
reversible operation is applied followed by 
another), the parity of the resulting overall net 
permutation is the sum of the parts of the two 
chained permutations. When two even 
permutations or two odd permutations are 
chained, the result is an even permutation. When 
circuiting one even and one odd permutation 
(regardless of the order) the result is an odd 
permutation. 
 
The parity is useful very often, when it must be 
proven, that something is impossible. For example, 

it is an integral part of the proof that can be created 
configurations of a sliding puzzle. It should be 
noted that the rules for adding a parity imply that 
an odd permutation can not be created by 
circuiting even permutations. This limitation will 
be used to show that some reversible operations 
can not be constructed out of smaller such. 
 
Let's examine a NOT gate with many controls, 
enough to affect all lines of a circuit. For example, 
let's have a 12-bit circuit and the last bit must be 
toggled, when the first nine are ON (i.e. we have 
𝐶11 𝑁𝑁𝑁). The permutation, corresponding to that 
𝐶11 𝑁𝑁𝑁 reverses the state 111111111110 with the 
state 111111111111, but leaves all other states 
unaffected. Since only one swap is performed and 
this is an odd number, 𝐶11 𝑁𝑁𝑁 is an operation 
with odd parity (when it is applied to a 12-bit 
circuit). 
 
Let's now consider any operation that does not 
affect all lines of a circuit. There must be some bit b, 
from which the operation does not depend on or 
affect. When examining the swaps, carried out by 
this operation, each swap at b = 0 must have an 
equivalent such at b = 1. In other words, the 
presence of an unaffected bit doubles the number 
of the swaps (since the swap must be done once at 
b = 0 and once at b = 1). Therefore the number of 
the swaps of the space of the states, carried out by 
this operation, must be even, so the operation has 
to have an even parity. 
 
Because a controlled NOT that affects each line, has 
an odd parity, and each operation, affecting on 
several lines, has an even parity, and the chaining 
of even operations can not create an odd operation, 
then it is impossible to decompose an operation 
with a controlled NOT, which affects all the lines, 
in smaller operations. 
 
The barrier of the parity sounds like a huge 
problem, but in fact is more about lack of working 
space rather than anything else. As soon as the 
controlled NOT stops to affect every single bit, the 
argument stops working. Although the chained 
permutations retain the total number of swaps 
when working on Module 2, this is not true for 
other modules. When there is even one indifferent 
bit, additionally the limitations of the parity can be 
bypassed. 
 
Ancillary bits 
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The ancilla bits are extra bits, not included in the 
performed logical operation, which give to the 
constructions of the circuit a "space to move". In 
addition to making the constructions possible in 
the first place, the ancilla bits allow for simpler and 
more effective constructions. 
 
The ancilla bits are several different types. 
Sometimes their initial value is known, and 
sometimes it is not. In some cases, their initial value 
must be restored, and in others - not. Usually for 
the ancilla bits it is assumed that they start in OFF 
or ON state and the constructions must return 
them to that state before completion (so later the 
gates can reuse the ancillary bit). In this article are 
described four types of ancilla bits. 
 
To avoid ambiguity and confusion, let's name and 
define the four types of ancilla bits: 
 
• Recordable bits: They initially are OFF, but 

they do not have restrictions for the state 
afterwards. Mainly the recordable bits are (a 
small part of) negative entropy, which can be 
consumed to perform some irreversible 
computations. 
 

• Zeroed bits : Initially they are OFF and must 
be ensured that they will remain OFF upon 
completion. The zeroed bits are usually used 
just as the recordable bits, with the exception 
that the effects are cleaned up before 
continuing. Circuits, using zeroed bits, are 
with a constant coefficient larger than circuits, 
using recordable bits, because of the 
uncomputation tax. 

 
 

• Garbage bits: They can be in any state initially 
and it is possible to add more and more 
garbage in the state (the initial value should 
not be restored). This type of bits are more 
complex to use in comparison with the 
recordable and zeroed bits, because a logic is 
necessary around the detection of toggling. 
The detection of toggling usually includes 
repeating of self-removable operation twice, 
conditioned on potentially toggled garbage 
bit. When no toggling occurs the operation 
either doesn't happen or happens twice. 
Circuits, using garbage bits, are with a 
constant coefficient larger than circuits, using 
recordable bits, because of the tax for toggle-
detection. 

 
• Borrowed bits: They can be in any state 

initially and must be restored to this state 
afterwards. The borrowed bits have the 
disadvantages of the zeroed and garbage bits 
and pay their taxes. However the borrowed 
bits are much more easy-to-find, because they 
can be borrowed from themselves. Each 
operation, which does not affect the entire 
circuit, can use unaffected lines as real bits for 
borrowing. 

 
With these four types of ancilla bits can be 
constructed some large controlled NOT-s. It was 
already discussed, why the case without ancilla bits 
is impossible, but what will happen in case of a 
single ancillary bit? 
 
Single ancillary bit 
If there is a circuit with n+2 lines with n control 
lines, one target line and a secondary line, the goal 
is to be broken up 𝐶𝑛 𝑁𝑁𝑁  into smaller operations. 
The idea is to be taken: 
 

 
Figure 1 

and to be broken up into controlled NOT-s with 
less controls. It is not necessary to reach up to 2 
controls, but simply to reduce the maximum 
number of controls per operation. 
 
The simplest case is when the single ancillary bit is 
recordable. The ancillary bit can be toggled to ON 
when half of the controls are ON, and then to be 
used a single control on the ancilla bit, which to 
play the role of this half of the controls: 
 

 
Figure 2 
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If the ancillary bit is zeroed instead of recordable, 
the effects on it must be cleared before finishing. 
The effects are very simple and can be removed by 
repeating the previous actions in the first place: 
 

 
Figure 3 

 
When the ancillary bit is garbage, shall be carried 
out detection of toggling. Conditionally T is 
toggled on both sides of the possible toggling of the 
ancillary bit, so that the T-toggling is canceled by 
itself, unless the ancillary bit was toggled: 
 

 
Figure 4 

 
Finally, the case with the borrowed bit is just a 
combination of the tricks with garbage and zeroed 
bit: 
 

 
Figure 5 

 

Each of the above constructions uses one ancillary 
bit, in order for 𝐶𝑛 𝑁𝑁𝑁 to become constant number 
of 𝐶

𝑛
2 𝑁𝑁𝑁 (more specifically are used 𝐶

𝑛
2  𝑁𝑁𝑁-s and 

𝐶
𝑛+1
2  𝑁𝑁𝑁-s). 

 
This construction can be applied iteratively, 
turning 𝐶𝑛 𝑁𝑁𝑁-s into 𝐶

𝑛
2  𝑁𝑁𝑁-s into 𝐶

𝑛
4  𝑁𝑁𝑁-s and 

so on p times, until reaching the basic case of the 
Toffoli gates when 𝑛

2𝑝
≈ 2. Unfortunately this may 

require more than linear number of Toffoli gates. 
 
For a bit, which can be borrowed, the differential 
equation as a result of iteration to the base case 
would be 𝑁(𝑛) = 4𝑁(𝑛

2
), which means an 𝑁(𝑛2) 

function. 
 
If there is a recordable bit, the differential equation 
can be expected to be 𝑁(𝑛) = 2𝑁(𝑛

2
) ∈ О(𝑛), but in 

reality, the bit can be recorded only once, so it must 
be toggled to garbage bit after the first iteration. 
 
For zeroed and garbage bits the things become 
more interesting. At first glance it seems that their 
differential equation must be just 𝑁(𝑛) = 3𝑁(𝑛

2
) ∈

О(𝑛log3 2) ≈ О(𝑛1.585) However an even separation 
should not be used between the sizes of the sub-
operations. Because only one of the sub-operations 
happens two times, can be gained efficiency by 
giving proportionately less controls. Therefore, 
instead of this, must be analyzed the differential 
equation 𝑁(𝑛) = 2𝑁(𝑐𝑛 ∙ 𝑛) + 𝑁�(1− 𝑐𝑛) ∙ 𝑛�, where 
𝑐𝑛 is a parameter for optimization, which 
determines the asymmetry of the separation. This is 
a very interesting differential equation, which 
unfortunately is difficult to solve. 
 
We have a recursive relation, which looks like this: 
𝑁(𝑛) = 2𝑁(𝑐𝑛 ∙ 𝑛) + 𝑁�(1− 𝑐𝑛) ∙ 𝑛�+ О(1) 
The basic case is 𝑁(a) = 1, when a ≤ 1. The task is 
to find the optimum value of 𝑐 ∈ (0,1), in order to 
minimize the speed of the asymptotic increase.  
 
If с = 1/2 is used after the recursion it can be 
simplified to 3𝑁(𝑛

2
) + O(1) and the increase can be 

described with the following relationship 
О(𝑛log3 2) ≈ О(𝑛1.585).  
 
The alternation of 𝑐1 and 𝑐0 = 1

3
, 1
2
 achieves resultant 

complexity О�𝑛log52� ≈ О(𝑛1.165). In the general 
case, if it is cycled through 1

р
, 1
р−1

… 1
3

, 1
2
  is obtained 

О�𝑛logр2р−1� ∈ О�𝑛logр 2р� = О�𝑛1+1/logр2� ∈ О(𝑛1+𝜖). 
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This suggests that, with the help of a single 
parameter с we can achieve approximate linear 
approximation, however we just can not set 
р = Г−1(𝑛). And perhaps the optimum value of 𝑐 
reaches О(𝑛 log(𝑛)), which is better than О(𝑛1+𝜖).  
Since the problems are caused by the 
multiplication, transforming the problem into 
𝑁(𝑛) = 𝑁(р) = 2𝑁(р − log(с)) + 𝑁(р− log(1− с)) +
2р could make things more easy.  
 
However, it is possible to circumvent the problem 
with the complicated differential equation. It must 
be noted that the constructions with a single bit 
always create sub-operations, which are quite 
smaller. It is ensured that there are at least �𝑛

2
� 

unaffected bits and the operations will have size at 
most 𝐶�

𝑛+1
2 � 𝑁𝑁𝑁  

 
And all these unaffected bits may be borrowed! 
 
n - 2 ancilla bits 
 
If there is a circuit with 2n - 1 lines, with n control 
lines, n - 2 ancillary lines and one target line, the 
goal is to break 𝐶𝑛 𝑁𝑁𝑁 to a linear number of 
Toffoli gates. The ancillary bits will be dispersed 
throughout the circuit instead of being placed at 
the bottom, to make the constructions look more 
simple: 
 

 
Figure 6 

 
The case with the recordable bits is again the most 
simpler. The Toffoli gates may be used to intercept 
controls, and the ancilla bits will store the 
gradually accumulating intersection of all controls. 
Finally, each recordable bit will be affected twice, 
and each control bit - once: 
 

 
Figure 7 

 
At the zeroed bits must be eliminated the garbage, 
which is added to the ancilla bits. The elimination 
is just a matter of applying the same operations in 
reverse order, by skipping only the operations that 
affected the target. This creates a circuit that looks 
like it's pointing towards the target: 
 

 
Figure 8 

 
The construction with a garbage bit again is based 
on detection of toggling, but this time the 
construction must be nested. The nested detectors 
of toggling will distribute the toggling, until one of 
them fails to be activated, so the nesting should be 
continued, while the target is conditionally toggled. 
The resulting circuit appears as an arrow, pointing 
out of the target: 
 

 
Figure 9 

 
The solution with borrowed bits again combines 
the detection of toggling and the elimination. Let 
us first take the solution with the garbage bits, then 
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eliminate the operations which do not affect the 
target: 
 

 
Figure 10 

 
Each of the above constructions uses n - 2 ancilla 
bits, in order to turn a 𝐶𝑛 𝑁𝑁𝑁 into O(n) Toffoli 
gate. 
 
Putting it all together 
 
The construction with a single ancillary bit is not 
effective enough to be applied iteratively. Since 
there are already effective constructions with n - 2 
ancilla bits, the efficiency problem can be solved, 
by switching to a construction with n - 2 borrowed 
bits after applying the relevant construction with a 
single ancillary bit. 
 
For example, the circuit, obtained after using one 
borrowed bit, brakes up 𝐶7 𝑁𝑁𝑁 into four 𝐶4 𝑁𝑁𝑁-
s, then brakes up each of these 𝐶4 𝑁𝑁𝑁-s into eight 
Toffoli gates by borrowing two unaffected bits: 
 

 
Figure 11 

This construction uses ≈ 16n Toffoli gates, 
achieving the limit O(n). This is asymptotically 
optimal, because without Ω(n) gates it is not 
possible to be included enough Toffoli gates, which 
to affect all involved lines. 
 
The constant factor of the number of the necessary 
gates depends on the type and number of the 
ancilla bits. If it is started with a single recordable 
bit instead of a borrowed bit, then the final number 

of Toffoli gates is shortened from ≈ 16n to ≈ 8n. If it 
is started with n bits for borrowing instead of only 
one, are achieved ≈ 4n. If it is started with n zeroed 
or garbage bits, giving an advantage in quality and 
quantity, this will lead to ≈ 2n. The best scenario, n 
recordable bits, requires only ≈ n gates. 
 
Summary 
 
Without ancilla bits it is impossible to be built 
operators with many controls from small 
operations. Multi-dimensional quantum 𝑁𝑁𝑁 
operators can be build with n controls from Θ(n) 
Toffoli gates with one ancillary bit, even if that bit 
is in an important unknown state that must be 
preserved. The presence of a greater quantity or 
better quality of ancilla bits improves the efficiency 
of the construction with constant coefficients. 
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